Motivation	Problem	Research Process	Results	Conclusions
○	○		000000	O

Building Highly Reliable Networks with GRASP/VND Heuristics

Mathias Bourel, Eduardo Canale, Franco Robledo, Pablo Romero, Luis Stábile

15th International Conference on Design of Reliable Communication Networks.

DRCN, 2019

<ロト<超ト<重ト<重ト 1/16

Motivation ●	Problem o	Research Process	Results	$_{\odot}$ Conclusions
Motivation				
Motivatio	n			

Remark

- Reliability falls within the field of metrology.
- Its practical interests is found in network design.
- Choose links to maximize reliability & connectivity.
- Minimum-cost topologies are partially known (eg. kECON).

◆ロト ◆聞 と ◆注 と ◆注 と … 注

What happens under probabilistic models?

Main Goal

We are given 2r terminals. Choose 3r links to achieve maximum reliability.

Motivation ○	Problem ●	Research Process	Results	Conclusions o
Problem				
Problem				

Definition (Unreliability)

The *unreliability* of a simple graph *G* with independent link failures with probability ρ is:

$$U_G(\rho) = \sum_{k=0}^q m_k \rho^k (1-\rho)^{q-k},$$

being m_k the number of ways to disconnect *G* removing *k* links. A (p, q)-graph is a graph with *p* nodes and *q* links.

Definition (Uniformly Most-Reliable Graph (UMR))

A (p, q)-graph G is UMR if its unreliability is minimum among all (p, q)-graphs and all $\rho \in [0, 1]$.

Motivation ○	Problem O	Research Process	Results	Conclusions o
Research Process				

Necessary and Sufficient Conditions

Proposition (Sufficient Condition)

If $m_k(G) \le m_k(H)$ for all k and all (p,q)-graph H, then G is uniformly most-reliable.

Proposition (Necessary Condition)

Optimal graphs G must have the maximum tree-number $\tau(G)$, maximum connectivity $\lambda(G)$, and the minimum number of disconnecting sets $m_{\lambda}(G)$.

<ロ > < 母 > < 言 > < 言 > 言 2000 4/16

Motivation	Problem	Research Process	Results	Conclusions
○	o	○●○○○○		o
Research Process				

Known Cubic UMR Graphs

Figure: Complete, Bipartite and Wagner graphs.

Figure: Petersen and Yutsis graphs.

Motivation o	Problem ○	Research Process oo●ooo	Results	\circ
Research Process				
Heuristic	- Main Id	ea		

- Minimize each coefficient m_k in individual blocks.
- Combine them in a Variable Neighborhood Search (VND).

<ロト<部ト<差ト<差ト<差ト 6/16

- The previous idea is computationally prohibitive!
- At least, force the necessary conditions.
- Use GRASP/VND to return a candidate.
- The objective should be only one...

Motivation o	Problem ○	Research Process ○○○●○○	Results	Conclusions O
Research Process				
Objective				

Conjecture (Boesch et. al.)

If G is uniformly most-reliable (p,q)-graph, then $m_k(G) \le m_k(H)$ for all (p,q)-graph H.

Remark

If Boesch conjecture holds, then the number of disconnected subgraphs $m(G) = \sum_{k=0}^{q} m_k$ must be minimized.

Finding m(G) is \mathcal{NP} -Hard (an evaluation of Tutte polynomial). Observe that $m(G) = 2^q \times U_G(1/2)$. An estimation for $U_G(1/2)$ is available using Monte Carlo.

<ロト</th>
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日

Motivation ○	Problem ○	Research Process ○○○○●○	Results	Conclusions O
Research Process				
GRASP/VI	ND			

Algorithm 1 $G = HighlyReliable(r, iter, \alpha)$

- 1: $G \leftarrow M_r$
- 2: for i = 1 to iter do
- 3: $G_{input} \leftarrow Construct(r, \alpha)$
- 4: $G(i) \leftarrow VND(G_{input})$
- 5: if $m(G(i)) \le m(G)$ for all k then
- 6: $G \leftarrow G(i)$
- 7: end if
- 8: end for

9: return G

Motivation ○	Problem O	Research Process ○○○○○●	Results	Conclusions ○
Research Process				
VND - Flo	ow Diagra	m		

<ロ > < 母 > < 臣 > < 臣 > 三 9/16

Motivation	Problem o	Research Process	Results ●ooooo	Conclusions o
Results				
Experim	nental Setti	ing		

Settings

- $r \in \{7, \ldots, 15\}.$
- iter = 10⁶ (executions of the GRASP/VND)
- $N = 10^4$ (sample graphs in Monte Carlo)
- Output: 9 graphs: *R_r*.
- Brute force test: they are the only UMR candidates.

<ロト<部ト<差ト<差ト<差ト 10/16

Motivation ○	Problem o	Research Process	Results o●oooo	Conclusions o
Results				
Results	: R ₇ and R	8		

Motivation ○	Problem o	Research Process	Results oo●ooo	Conclusions o
Results				
Deculto				

Results: R_9 and R_{10}

 $U_{R_{10}}(rac{1}{2})=0.97310\ au(R_{10})=6422000$

Motivation ○	Problem ○	Research Process	Results ○○○●○○	Conclusions o
Results				
Desults	D and I			

Results: R_{11} and R_{12}

Motivation ○	Problem ○	Research Process	Results oooo●o	Conclusions o
Results				
Deculto	D and I			

Results: R_{13} and R_{14}

Motivation ○	Problem o	Research Process	Results ○○○○○●	Conclusions o
Results				
Results:	R ₁₅			

 $U_{R_{15}}(rac{1}{2}) = 0.9956$ $au(R_{15}) = 23066015625$

Motivation	Problem o	Research Process	Results	Conclusions ●
Conclusions Conclus	ions			

- Finding UMR graphs is hard.
- A methodology to find highly reliable networks is proposed.

<ロト</th>
日本
日本<

- New candidates of UMR graphs are also found.
- UMR graphs are highly symmetrical.
- Several conjectures are still open.
- Only few works deal with node-failures.