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OUTLINE

• Background
– Distributed computing network

– Network flow interdiction

• Computing network model 
– Communication/computation resource constraints

• Max flow and min cut
– Min communication/computation/joint cut

– Gap between max flow and min cut

• Flow interdiction
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COMPUTING NETWORK

• Traditional data network: transmitting 
data packets end-to-end 
– Objective: maximizing throughput 

– Robustness metric: min-cut, max-flow

• New network applications require 
both communication and computation
– Examples: cloud/fog computing, virtual 

reality streaming, content distribution 
network

• Computing network failures
– Amazon Web Service failure due to power 

outage/software bug: 4 hour outage in 
2017 cost 150 million dollars

– Intentional attacks (DoS, etc.)
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https://www.npr.org/sections/thetwo-way/2017/03/03/518322734/amazon-and-the-150-million-typo


PREVIOUS WORK

• Network robustness 
– Max-Flow and min-cut [Dantzig, Fulkerson, 1956]

• Network interdiction
– Minimizing max flow by removing links within a budget [Wood 1993; 

Phillips 1993; Burch et al. 2003]

• Failure models
– Cross layer network robustness: WDM network [Medhi, Tipper 2000; 

Modiano, Narula-Tam 2001; Hu 2003; Lee, Modiano 2011]

– Shared risk group model [Medhi 1994; Coudert et al. 2007]
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MODEL

• Graph 𝑮(𝑽, 𝑬) represents a computing network
– Flow is processed at computation nodes 𝑽𝒄 ⊆ 𝑽

– Computation constraints at nodes 𝑽𝒄

– Communication constraints at links 𝑬

• Links have communications capacity

• Nodes have computation capacity

• Robustness:  Flow reduction due to node/link removals
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Computation node 𝑉𝑐 = {𝑢}
Communication links
𝐸 = { 𝑠, 𝑢 , 𝑢, 𝑡 , 𝑠, 𝑣 , (𝑣, 𝑡)}

𝑠 𝑡

𝑣

𝑢 Link Capacity 

Node Capacity 



ROBUSTNESS METRIC – CUT

• Communication cut

• Computation cut

• Joint communication and computation cut
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𝑠 𝑡𝑢 𝑣

𝑠 𝑡𝑢 𝑣

10       1      10         1        10       cut = 10, flow = 2

1        10        1         10        1       cut = 20, flow = 1

𝑠 𝑡

𝑢 𝑣

𝑢 𝑣
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1 1 1
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5

5

5

1 1

cut = 1 + 1 + 1 = 3
flow = 1 + 2 = 3

Arbitrary gap between 
max-flow and min-cut

Joint cut is smaller than either 
communication or computation cut
(gap at most factor of  two )



LAYERED GRAPH REPRESENTATION

• Layered graph representation for a computing network
– Two layers:  duplicate graph and add links between computation nodes  

 Link Capacity = computation node capacity

– Flow must traverse computation link and depart at lower layer (t’)

– One-to-one mapping between an 𝑠 − 𝑡 flow in the computing network 
and an 𝑠 − 𝑡′ flow in the layered graph

– One link cut in the computing network corresponds to two copies of the 
link cut in the layered graph
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Flow on physical link (𝑢, 𝑣) is the 
sum of flows on (𝑢, 𝑣) and 
(𝑢′, 𝑣′) in the layered graph – must 
obey capacity constraint



COMPUTING THE MAXIMUM FLOW

• Assumptions
– No flow scaling due to computation

– Normalization: each unit flow requires unit bandwidth for transmission 
and unit computation resource for processing

• Linear program (based on the layered graph, polynomial time)
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flow conservation

computation capacity constraint

communication capacity constraint

layered graph ෨𝐺 = ( ෨𝑉, ෨𝐸)



COMPUTING THE MIN CUTS

• Complexity

• Integer programming for min joint cut 
– Node potential approach
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min computation cut Polynomial time solvable

min communication cut NP-hard  (exact cover by 3-sets)

min joint cut NP-hard  (exact cover by 3-sets)

𝑦𝑤 = 1: removing computation
capacity at node 𝑤.

𝑦𝑢𝑣 = 1: removing communication
capacity at link (𝑢, 𝑣).

Compute the min communication cut by 
setting 𝑦𝑤 = 0, ∀𝑤 ∈ 𝑉. 

Compute the min computation cut by 
setting 𝑦𝑢𝑣 = 0, ∀(𝑢, 𝑣) ∈ 𝐸. 



COMPUTING THE MIN CUTS

• Linear-time exact algorithm for computing the min 
computation cut
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𝑣1

𝑠 𝑡𝑣2

𝑣3

𝑣4
Compute the set of computation nodes 
that can be reached from 𝑠. {𝑣1, 𝑣2}

Compute the set of computation nodes 
that can reach 𝑡. {𝑣2, 𝑣4}

Union of the two sets. {𝑣2}

• Approximation algorithm for computing the min communication cut and 
the min joint cut

– Compute the min cut in the layered graph
– Map the min cut to the original graph

• Performance: 2-approximation
– The value of the cut computed by the approximation algorithm is at most twice the 

value of the min cut
– Intuition: Cutting two different links in the layered graph “costs” twice as much as 

cutting the same link in both layers



MAX FLOW MIN CUT

• Theorem: Min joint cut is at most twice the max flow
– Proof using the layered graph

• Example: Min joint cut can be twice as large as the max flow

• Note: Added cycle needed for processing at node v
– A flow will traverse the same link at most twice: Once before processing 

and once after processing
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𝑣

2

𝑠 𝑡

2

2

2 Max flow = 1:
The flow has to traverse link 
(𝑠, 𝑡) twice.

Min joint cut = 2
Min communication cut = 2
Min computation cut = 2



UNSATURATED NODE/LINK IN MIN JOINT CUT

• In the standard flow model, edges in min cuts are saturated by 
the max flow. This does not hold in a computing  network.

• Unsaturated node in min joint cut

• Unsaturated link in min joint cut
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𝑣

2

𝑠 𝑡

2

2

1.5
Min joint cut: node 𝑣

Only 1 unit computation resource is 
occupied by the max flow. 0.5 unit 
computation resource remains idle.

𝑣

2

𝑠 𝑢

2

2

2

1.5
𝑡

Min joint cut: link (𝑢, 𝑡)

Only 1 unit communication resource is 
occupied by the max flow. 0.5 unit 
communication resource remains idle.



FLOW INTERDICTION

• Minimizing the max flow by removing communication and 
computation resources within a given budget (B)
– Remove any combination of communication and computation resources

– Interdiction cost can be either equal to the removed capacity, or 
independent of the removed capacity (arbitrary)

– Interdiction type: either removes the entire link/computation resource at 
a node at a fixed cost (binary), or removes a fractional capacity at a 
fractional cost (partial)

• Special cases of traditional interdiction problems that are NP hard
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interdiction cost = 
removed capacity

arbitrary cost

binary interdiction NP-hard NP-hard

partial interdiction ? NP-hard



OPTIMAL INTERDICTION IS VERY DIFFERENT THAN IN TRADITIONAL NETWORKS

• In traditional model, the amount of max-flow decrease equals 
the amount of removed capacity in the min cut
• In a computing network, since links or nodes in the min cut are not 

saturated by the max flow, attacking the min cut may not be optimal

• The optimal attack strategy depends on the budget

• Budget B ≤ 1

– Optimal strategy: interdict link (s,u)

– Max-flow will be (2-B)/2

– Max-flow decreases at rate 1/2

• B ≥ 1

– Optimal strategy: interdict link (u,t)

– Max-flow will be 1.5-B

– Max-flow decreases at rate 1

• Observations:  

– 1) The strategy changes as a function of the budget B

– 2) The rate of max-flow decrease changes with B

– 3) Optimal strategy does not necessarily interdict the minimum-cut
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𝑣

2

𝑠 𝑢

2

2

2

1.5
𝑡



NON-MONOTONE FLOW REDUCTION RATE

• The rate of max flow decrease is non-monotone as 
communication and computation resources are removed
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budget < 1: remove partial communication resource at (𝑠, 𝑤)
1 < budget < 2: remove all communication resource at (𝑠, 𝑤); remove partial 
communication resource at (s, 𝑢)
2 < budget < 2.5: remove all communication resource at (𝑠, 𝑤); remove partial 
communication resource at (𝑢, 𝑡)



APPROXIMATION ALGORITHM FOR FLOW INTERDICTION

• Consider the max flow LP again

• Shadow prices
– Rate of change of the objective for one unit change of the right-hand 

side value of the constraint

– 𝑞𝑤: rate of max-flow decrease for each unit processing capacity 
decrease at node 𝑤

– 𝑞𝑢𝑣:  rate of max-flow decrease for each unit transmission capacity 
decrease at link 𝑢, 𝑣
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computation capacity constraint

communication capacity constraint

𝑞𝑤

𝑞𝑢𝑣



APPROXIMATION ALGORITHM FOR FLOW INTERDICTION

• Greedy binary interdiction (cost equals capacity):
– Iteratively cut a link or node that has the largest shadow price (within 

budget)

• Greedy binary interdiction (arbitrary cost):
– Iteratively cut a link or node that has the largest cost-efficiency (within 

budget): shadow price * capacity / interdiction-cost

• Partial interdiction
– Same as above, reduce capacity of selected link up to budget

• Exact solution ILP
– Algorithm based on duality from Minimum Fractional Cut ILP
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NUMERICAL RESULTS 18

• Approximation algorithms have good performance
– Abilene network (11 nodes, 14 links) 

– Randomly generated capacities and costs

– Source node 1, destination node 2

Cost = removed capacity
Greedy algorithm has good performance



NUMERICAL RESULTS

• CenturyLink network (170 nodes, 230 links)

• Running time comparison
– 10 randomly chosen s-t pairs. 6 levels of budgets. Total: 60 instances

– Exact solution (ILP) fails to output a solution within 10 minutes for 54 
instances 

– Greedy algorithm outputs a solution usually within a few seconds
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CONCLUSION

• Model for a distributed computing network
– Both communication and computation resource constraints

• Robustness metrics
– Complexity analysis of Min communication/computation/joint cut 

– Algorithms for computing max flow and min cuts

– Arbitrary gap between max flow and communication/computation cut

– Factor of two gap between max flow and joint cut

• Network flow interdiction problems
– Formulations for budgeted flow interdiction problem

– Exact solution (ILP) and greedy algorithms for interdiction
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BACKUP SLIDES

• Min joint cut is at most twice the max flow

• Exact solution (ILP) to binary interdiction
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PROOF THAT THE MIN CUT IS AT MOST TWICE THE MAX FLOW

• Layered graph
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𝑠(0) 𝑑(0)

𝑠(1) 𝑑(1)

𝑢(0)

𝑢(1)

𝑣(0)

𝑣(1)

Relaxing the communication 
capacity constraint in the layered 
graph G’. Treat G’ as the classical 
flow network model.

Max flow value in G’ is at most 
twice the max flow value in G.

Min cut value in G’ equals the max 
flow value in G’.

Min cut value in G is at most the 
min cut value in G’.

Min cut value in G is at most twice 
the max flow value in G.



EXACT SOLUTION TO BINARY FLOW INTERDICTION 25

• Variables
– 𝑧𝑢𝑣: whether link (𝑢, 𝑣) is removed

– 𝑧𝑤: whether computation resource at node 𝑤 is removed

– 𝜇𝑢𝑣𝛽𝑢𝑣: amortized amount of flow contributed by link (𝑢, 𝑣)

– 𝜇𝑤𝛽𝑤: amortized amount of flow contributed by node 𝑤


